MCA406: Internet of Things

Teaching SchemeLectures: 3 hrs/Week

Tutorials: 1 hr/Week

Credits: 4

Examination Scheme

Class Test -12Marks

Teachers Assessment - 6Marks

Attendance – 12 Marks

End Semester Exam – 70 marks

Pre-requisites: Network Fundamental and Basic Introduction about Python.

Course Objectives:

- 7. Define the Internet of Things.
- 8. To discussed different type of design of IoT.
- 9. Describe the important computer network and there uses.
- 10. Introduction to challenges in Design, Development and Security.
- 11. Introduction to nature wise requirement of different type IoT Application.
- 12. Introduction to development IoT application in Python.

Detailed Syllabus

Unit-1

Introduction to IoT- Defining IoT, Characteristics of IoT, Physical design of IoT, Logical, design of IoT, Functional blocks of IoT, Communication models & APIs

Unit-2

IoT & M2M- Machine to Machine, Difference between IoT and M2M, Software, define Network

Unit-3

Network & Communication aspects- Wireless medium access issues, MAC protocol survey, Survey routing protocols, Sensor deployment & Node discovery, Data aggregation & dissemination

Unit-4

Challenges in IoT- Design challenges, Development challenges, Security challenges, Other challenges

Unit-5

Domain specific applications of IoT- Home automation, Industry applications, Surveillance applications, Other IoT applications

Unit-6

Developing IoTs - Introduction to Python, Introduction to different IoT tools, Developing applications through IoT tools, Developing sensor based application through embedded system platform, Implementing IoT concepts with python

Text and Reference Books

- 1. Vijay Madisetti, Arshdeep Bahga, "Internet of Things: A Hands-On Approach"
- 2. Waltenegus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks: Theory and Practice

Course Outcomes:

- 1. Understand to IoTs and their design concepts.
- 2. To understand M2M and IoT and their differences.
- 3. To understand the network protocol those are used for IoT Configuration.
- 4. Students will create, design documents for IoTs with understanding of security issues.
- 5. Students will understand *different* types of application of IoTs.
- 6. Students will able to develop IoTs application using Python.

MCA407: MATLAB	
Teaching Scheme	Examination Scheme
Lectures: 3 hrs/Week	Class Test -12Marks
Tutorials: 1 hr/Week	Teachers Assessment - 6Marks
	Attendance – 12 Marks
Credits: 4	End Semester Exam – 70 marks

Prerequisite: - Basic Mathematics, Elementary knowledge of computer programming and basic understanding of matrices, linear algebra, calculus, trigonometric functions and geometry.

Course Objectives:

Familiarization of the syntax, semantics, data-types and library functions of numerical computing languages such as MATLAB and/or SCILAB, and application of such languages for implementation/simulation and visualization of basic mathematical functions relevant to electronics applications.

Detailed Syllabus

UNIT I (6 Hours)

Basics of MATLAB: Starting MATLAB, matrices, variables, and the colon operator, linspace, plotting vectors.

UNIT II (10 Hours)

Matrices: Typing matrices, concatenating matrices, useful matrix generators, subscripting, end as a subscript, deleting rows or columns, matrix arithmetic, transpose.

UNIT III (10 Hours)

MATLAB Programming: Logical expressions, for loops, while loops, conditional programming, scripts, function m scripts, return statements, recursive programming.

UNIT IV (10 Hours)

Basic Graphics: Plotting many lines, adding plots, plotting matrices, clearing the figure window, subplots.

Graphics of Functions of Two Variables: Basic plots, color maps, color bar.

UNIT V (10 Hours)

Text Strings and cell arrays: String matrices, comparing strings, string manipulations, converting numbers to strings, using strings as commands, introduction and use of cell arrays.

UNIT VI (10 Hours)

Multidimensional Arrays: Generating Multidimensional Grids, Operations with Multidimen-sional Arrays. Digital Image Processing using MATLAB: Reading and writing gray scale image, Conversion of gray scale image to binary image, finding the number of density, perimeter, branch, area points of the image.

Text and Reference Books

- 1. Basics of MATLAB and beyond, Andrew knight, CRC Press LLC, 2000.
- 2. A Guide to MATLAB for Beginners and Experienced Users, Brian R. Hunt, Ronald L. Lipsman, Cambridge University, 2005.
- 3. Digital Image Processing using METLAB, Rafel, Richard & Steven, Pearson, 2007.